Tuesday, 19 February 2008
the wrath of math, the Lissajous curve
not too good on the maths,but i know how to copy and paste a formular....
heres the maths behind the harmonograph, the Lissajous curve, copied and pasted from wikipedia again.
In mathematics, a Lissajous curve (Lissajous figure or Bowditch curve) is the graph of the system of parametric equations
which describes complex harmonic motion. This family of curves was investigated by Nathaniel Bowditch in 1815, and later in more detail by Jules Antoine Lissajous in 1857.
The appearance of the figure is highly sensitive to the ratio a/b. For a ratio of 1, the figure is an ellipse, with special cases including circles (A = B, δ = π/2 radians) and lines (δ = 0). Another simple Lissajous figure is the parabola (a/b = 2, δ = π/2). Other ratios produce more complicated curves, which are closed only if a/b is rational. The visual form of these curves is often suggestive of a three-dimensional knot, and indeed many kinds of knots, including those known as Lissajous knots, project to the plane as Lissajous figures.
Lissajous figures where a=1, b=N (natural number) and are Chebyshev polynomials of the first kind of degree N.
Lissajous figures are sometimes used in graphic design as logos. Examples include the logos of the Australian Broadcasting Corporation (a = 1, b = 3, δ = π/2) and the Lincoln Laboratory at MIT (a = 4, b = 3, δ = 0).
Prior to modern computer graphics, Lissajous curves were typically generated using an oscilloscope (as illustrated). Two phase-shifted sinusoid inputs are applied to the oscilloscope in X-Y mode and the phase relationship between the signals is presented as a Lissajous figure. Lissajous curves can also be traced mechanically by means of a harmonograph.
In oscilloscope we suppose x is CH1 and y is CH2, A is amplitude of CH1 and B is amplitude of CH2, a is frequency of CH1 and b is frequency of CH2, so a / b is a ratio of frequency of two channels, finally, δ is phase shift of sin curve of CH1.
Below are some examples of Lissajous figures with δ = π/2, a odd, b even, |a − b| = 1.
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment